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Introduction 

 

In this chapter we treat the multivariate analysis problem, which occurs when there is 

more than one piece of information from each subject, and present and discuss several 

materials analysis real data sets. We first discuss several statistical procedures for the 

bivariate case: contingency tables, covariance, correlation and linear regression. They 

occur when both variables are either qualitative or quantitative: Then, we discuss the case 

when one variable is qualitative and the other quantitative, via the one way ANOVA. We 

then overview the general multivariate regression problem. Finally, the non-parametric 

case for comparison of several groups is discussed. We emphasize the assessment of all 

model assumptions, prior to model acceptance and use and we present some methods of 

detection and correction of several types of assumption violation problems. 

 

The Case of Bivariate Data 

 

Up to now, we have dealt with data sets where each observation consists of a single 

measurement (e.g. each observation consists of a tensile strength measurement). These 

are called univariate observations and the related statistical problem is known as 

univariate analysis. In many cases, however, each observation yields more than one piece 

of information (e.g. tensile strength, material thickness, surface damage). These are called 

multivariate observations and the statistical problem is now called multivariate analysis.  

 

Multivariate analysis is of great importance and can help us enhance our data analysis in 

several ways. For, coming from the same subject, multivariate measurements are often 

associated with each other. If we are able to model this association then we can take 

advantage of the situation to obtain one from the other. This is especially useful when one 

measurement or variable is easier, cheaper, faster or more accurately obtained than 

another one with which it is associated in some way. 

 

For example, if the tensile strength of some material is associated with its thickness or its 

surface damage, we may be able to model this association accurately. If this is the case, 

then we can obtain an estimation of the tensile strength of a material having, say, a 

specific thickness, without the need to actually measure it. This advantage may save us 

the cost and the time of having to actually carry out this experimentation. 

 

In the general case of multivariate analysis, each observation consists of n pieces of 

information represented by a vector x = (x1 , … , xn). These information elements can be 



qualitative, quantitative or a combination of both. For example, we may have a vector of 

n=3 elements where the first component is tensile strength, the second is the batch (Id 

number) and the third is the material thickness. In this case, the first and third vector 

components are quantitative and the second (e.g. batch number) is really qualitative. 

 

There are different statistical procedures according to whether the information is 

qualitative, quantitative or a combination of both. We start with the simpler, more straight 

forward  multivariate case, with only two components: the bivariate analysis. 

 

In the rest of this chapter, we first discuss and develop bivariate analysis examples for 

qualitative and quantitative data. Then, we develop a mixed qualitative/quantitative case. 

The case where both variables or information vector components are qualitative is 

developed via contingency tables and the analysis of categorical data. The case where 

both variables are quantitative is analyzed via correlation methods. The case where there 

is a combination of both, quantitative and qualitative variables, is approached using 

analysis of variance methods (ANOVA). Finally, we develop an example of the AD non-

parametric test for several independent samples, that is an alternative to ANOVA. 

 

Contingency Tables 

 

Assume we have a bivariate information vector with two qualitative components. For 

example, we may want to analyze different sources that collect materials data information 

with the objective of classifying these sources into “reliable” or “deficient” data providers 

according to their data pedigree and their data handling track record. 

 

We may then look at different characteristics of these data sources, in order to see if there 

are specific activities that these data sources do (or don’t do) that are somehow associated 

with they being classified as “reliable” or “deficient”. If such activity exists, we can look 

at this qualitative information and use it to pre-classify an incoming data set, or at least to 

have an initial idea of the quality of the data we will be handling. 

 

Let’s assume that, in general, data sets may or may not have been “validated” (defined 

according to the Munro and Chen [14] methodology). Such “validation” includes the 

confirmation of the values obtained via the application of correlation and other statistical 

models to the data obtained. Let’s assume that there is reason to believe that those 

organizations submitting their data to such additional investigative procedures are able to 

check and correct any errors and hence display research characteristics that enhance and 

help insure the quality of the information they provide. Let’s assume that we want to use 

statistics to assess such a belief (i.e. our working hypothesis that we must test). 

 

Assume that we have a set of n= 26 (fictitious) bivariate observations consisting of the 

qualitative pair (assessed data quality, validation practices) obtained from 26 data 

organizations. We will use these data to test the null hypothesis H0 that there is NO 

association between the qualitative variables or factors “assessed data quality” and 

“validation practices”. The alternative hypothesis H1 states that there is some kind of 

association (positive or negative) between the two factors above mentioned. 



 

We can build a contingency table containing, as row entries, the values (reliable and 

unreliable data) and, by column, the values (validated and unvalidated data). Each 

organization will be classified in one of four possible classes (cells): reliable and 

validates data; unreliable and validates data, reliable and does not validate and unreliable 

and validates. Under the null hypothesis of no association, it would be equivalent to 

assign each organization, by chance, to any one of the four classification groups or cells. 

 

At first glance, it may seem that all four classes would have the same expected frequency. 

But this is not the case, except when there is the same number of observations from each 

of the classes, which is rarely the case. For example this would occur if we had exactly 

the same number of organizations that had validated their data, as there were that hadn’t. 

But in general, the groups vary because they are selected at random and there is no reason 

that they should come out in the same proportion. In such case, the probability that they 

are classified, by chance, in any of the four classes depends on the expected (theoretical) 

class (cell) “size” in the sample chosen. This cell “size” is obtained by multiplying the 

total of the corresponding row by the total of the column, of the class or cell in question, 

and dividing the result by the sample size (general total). The resulting value (which in 

general is not an integer) yields the number of “expected” elements in the cell, i.e. those 

that would have fallen in that cell, were there no association between the two variables or 

factors. In our example, this is the “expected” number of organizations within each class, 

if there were no association between validation practices and data quality. 

The reason for this variation in cell “size” is that row and column totals, which define the 

opportunities to fall in the cell, also differ. One can think of a square, painted on the floor 

and subdivided into four cells of different sizes. If one drops, at random, a bunch of beans 

on top of this square, the number of (expected) beans that end up in each of the four cell 

subdivisions is proportional to the (length times width) cell area or size. 

The statistic used for testing this hypothesis is the Chi-Square, with degrees of freedom 

(d.f.)  equal to the number of rows minus one (r-1) times the number of columns (c-1) 

minus one, that form the analysis table. The Chi-Square statistic has the form: 

                   ( Ei-Oi
2

 

i=1,k  -----------
 

                        (Ei 

Where Ei are the “expected” and Oi are the “observed” values (i.e. the actual values in the 

corresponding cell) for each of the k contingency table cells in the analysis.  

For illustration, the example on data source classification is developed below. In each of 

the four contingency table cells, the expected counts are printed under the observed 

counts. The Chi-Square statistic has one degree of freedom (df = (2-1)*(2-1) = 1). 



 
 

          good      bad    Total 

Validate     9        2       11 

Exp       5.50     5.50 

 

NoValidate   4       11       15 

Exp       7.50     7.50 

 

Total       13       13       26 

 

ChiSq =  2.227 +  2.227 + 1.633 +  1.633 = 7.721 

 

From the Chi-Square table, the critical value (c.v.) for a significance level of 0.05 is: 

  3.84. Since the test statistic (7.72) is larger than 3.84, it falls in the critical or 

rejection region. We reject the null hypothesis of no association between factors “data 

classification” and “validation practices”. Hence, there is an association and it becomes 

apparent from the contingency table: good data tends to be from validating organizations 

and bad data from non validating organizations. The assumed (ficticious) claim that 

validating the data has some positive bearing in data having a better quality, seems to be 

supported by the data. Further readings on categorical data analysis and the use of 

contingency tables can be found in the references [8, 9, 10] in this order of difficulty. 

 

Regression 

 

In the previous section, the bivariate data used was qualitative (categorical). That is, each 

observation or data point Pij = (i , j) provided two qualitative pieces of information (e.g. 

the data quality is good or bad and the organization validates or doesn’t validate its data). 

When, instead, both measurements are quantitative, i.e. when Pi = (Xi ,Yi), where Xi ,Yi 

are quantitative variables, then the association between the two variables can be 

established more efficiently. For, now we have more information in the form of a 

stronger measurement scale for the variables under analysis. 

 

Assume now that two quantitative measurements Xi and Yi, are obtained from each data 

point Pi ;  i  n. Assume they correspond to the surface damage of a ceramics material 

(indexed 1 through 6, per the number of blemishes per unit area) and its corresponding 

tensile strength. Also assume that variable Xi (damage) is easier, faster, cheaper or more 

accurately obtained than Yi (tensile strength). If X and Y were actually associated then 

we could find and use such relation to obtain an alternative or  improved estimation of Y 

(tensile strength) given X (material surface damage). This is the philosophy behind 

regression analysis and what makes it a really useful working tool. Assume that the data 

for this problem consists of the 31 bivariate data points below, obtained by modifying the 

Example #2 of Program RECIPE (http://www.itl.nist.gov/div898/software/recipe/ex2.dat/) so as to 

serve as illustration of this statistical procedure. 

 

http://www.itl.nist.gov/div898/software/recipe/ex2.dat/


 
 ROW  damage   matstr 

 

   1      1   325.117 

   2      1   331.767 

   3      1   344.783 

   4      1   343.266 

   5      1   335.731 

   6      2   291.039 

   7      2   287.460 

   8      2   302.042 

   9      2   320.486 

  10      2   312.130 

  11      2   303.049 

  12      3   328.093 

  13      3   308.732 

  14      3   312.429 

  15      3   308.265 

  16      3   282.888 

  17      4   285.694 

  18      4   315.397 

  19      4   291.863 

  20      4   301.098 

  21      4   311.277 

  22      5   297.974 

  23      5   309.519 

  24      5   319.596 

  25      5   299.946 

  26      5   307.719 

  27      6   273.121 

  28      6   291.785 

  29      6   286.850 

  30      6   270.018 

  31      6   276.199 

 

The descriptive statistics for the raw data are given below: 
 

                N     MEAN   MEDIAN STDEV  MIN     MAX      Q1      Q3 

damage         31    3.452    3.000 1.729  1.000  6.000   2.000   5.000 

matstr         31   305.66   307.72 19.67 270.02 344.78  291.04  319.60 

 

The statistical analysis philosophy in this problem is similar to the one followed with 

qualitative variables. However, we can now implement more and better procedures 

because we have better and stronger information. We thus start by plotting Yi (strength) 

vs. Xi (damage) for each  i  n (observation). If there is no association between 

variables X and Y (the same null hypothesis H0 as before) then the resulting set of points 

Pi = (Xi ,Yi), will be uniformly and randomly scattered all over the X-Y plane.  
 

We can also draw two lines, one vertical through the average of the projections over the 

X-axis (3.45) and one horizontal, through the average (305.6) of the projections over the 

Y-axis. They will divide the plane into four quadrants. Under H0 (i.e. no association 

between damage/strength) the set of points Pi should be equally and randomly distributed 

among  these four quadrants. As can be seen below, this is not the case. Actually, we 



have double the number of points in quadrants II and IV than in I and III. This indicates a 

possible negative association between X and Y (i.e. as one increases the other decreases). 
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In general, if there is an association between X and Y (i.e. if we reject H0) the number of 

points in each quadrant will differ. If there is a positive association (i.e. when X 

increases/decreases, so does Y) then the points will tend to cluster in the upper right and 

lower left quadrants. If there is a negative association between X and Y, the points will 

cluster in the upper left and lower right quadrants. Such is the case above. 

 

Again, this situation is analogous to setting free some beans, at random, from a location 

on the intersection of the mentioned two lines drawn on the plane shown above. Since the 

four quadrants are of the same size and there is no other external force guiding the beans, 

the expected number of beans in each of the four quadrants is the same. On the other 

hand, if there is a driving external force (such as an association between the two factors 

analyzed) then the number of beans in each of the quadrants will differ. 

 

In the scatter plot above, the second and fourth quadrant concentrate most of the points at 

the expense of the first and third quadrants. This indicates that, in this example, there is a 

negative association between factors X and Y (i.e. that as the material surface damage 

increases, its tensile strength decreases). We proceed to investigate this analytically. 

 

The indicator “covariance between X and Y” characterizes such relationship. It is defined 

as: Cov(X, Y) = Sxy = (xi-x*)(yi-y*) / (n-1) ; where x
*
 and y

* 
are the corresponding 

sample averages. The covariance indicator is positive when a positive association 

between X and Y exists; negative when a negative association exists and zero if no 

association exists. In our surface damage and tensile strength example we have: 
 

Covar (damage,  matstr) =  -22.92 

 



As a measure of association between two variables, the covariance is difficult to interpret. 

For, it depends heavily on the units in which variables X and Y are being measured. The 

above covariance of 386.8 is no exception. We would like to have a more interpretable 

measure of the degree of association between variables X and Y than this number. 

 

The correlation coefficient, defined as rxy = Sxy / Sx Sy (where Sx and Sy are the sample 

standard deviations of variables X and Y) is sort of a “normalized” covariance. It  also 

measures the association between X and Y, like the covariance. However, rxy is  

“dimensionless” therefore, easier to interpret, because -1  rxy  1. In our example: 

 
Correlation between damage and matstr = -0.674 

 

This again means that, as X (surface damage) increases, Y (tensile strength) decreases. In 

addition, rxy  is a measure of  “linear” association between X and Y. If rxy  0 (and close 

to unit) then there is a “linear” trend that models the association between X and Y, with 

positive slope. If  rxy  0 (and close to -1) this linear trend has a negative slope. In our 

example, the correlation value (–0.674) indicates that there is a linear trend that models 

the relationship between material surface damage and its associated tensile strength, with 

a negative slope. The Y vs. X plot above has been analytically corroborated. 

 

It is therefore very useful to obtain the analytical form of such a linear trend (when it 

exists) called the linear regression. Then, we use it to obtain a better estimate of Y (the 

dependent variable) given X (the predictor variable). For, lacking any other information, 

the best estimate of Y (tensile strength) given X (material surface damage) is always the  

(point estimator) mean of Y (or at best, a confidence interval for its mean). With the 

additional information that a linear relationship exists between X and Y, and having a 

specific value of X, we can (by using the regression) improve in the estimation of Y. 

 

From the tensile strength boxplot we obtain a sample of its distribution and its median: 
 

                            ------------------- 

              --------------I          +      I------------------  

                            ------------------- 

          ----+---------+---------+---------+---------+---------+matstr   

            270       285       300       315       330       345 

 

The above distribution looks symmetric; its sample average and standard deviation are 

known to be: (305.66, 19.67). With no further information, the mean and variance would 

provide the best estimation for tensile strength. However, if an association between 

surface damage and tensile strength exist, estimations can be improved with regression. 

 

In mathematical terms, the (theoretical) linear regression model has the expression: 

 

Yi  0  1 Xi  i   ;   1  i  n 

 

Constants 0 and 1 are called regression coefficients. Variable i represents the random 

error term, which is distributed Normally with mean zero (which means it is symmetric 

and averages out). The estimated regression line is obtained by minimizing the sums of 



squares (
2

i) of the distances (called residuals) from every data point to the said line. 

This one is not a statistical procedure. It is just a mathematical procedure for driving a 

line through and closest to a cloud of points on a plane. The point estimations for the 

linear regression coefficients are also random variables and are denoted by b0 and b1. 

 

In addition to the above mathematical work, one imposes a specific statistical distribution 

on the residuals (the distances from each point to the line). This other is a statistical 

procedure. Mathematically, linear regression is just the line of best fit to the data points. 

Hence, all its estimations (e.g. of coefficients 0 and 1 or of the mean Y values given 

specific values X) are always acceptable point estimators. 
 

However, the tests of hypotheses, confidence intervals and other regression outputs are 

all statistical concepts. They are only valid when the statistical assumptions of Normality, 

equal variance and independence of the regression residuals are met. This is an important 

differentiation, to be taken into account whenever implementing a regression model. 

 

From the above data, we have obtained the linear regression for tensile strength, given the 

surface damage of the material in question. The results are given below: 

 
matstr = 332.13 - 7.67 damage 

 

Predictor       Coef       Stdev    t-ratio        p 

Constant     332.135       6.002      55.34    0.000 

damage        -7.671       1.560      -4.92    0.000 

 

s = 14.77       R-sq = 45.5%     R-sq(adj) = 43.6% 

 

The material tensile strength (matstr) is estimated by the line with intercept 332.13 and 

slope –7.67. If surface damage were not a consideration (not significant) then the best 

estimate for tensile strength would always be the mean of tensile strength values. The two 

regression coefficient estimators: b0 (constant term or intercept, 332.13) and b1 (slope 

term –7.67) are R.V. with standard deviations 6.002 and 1.56, respectively. If residuals 

are independent and Normally distributed with mean zero and same variance, then b0 and 

b1 are Normally distributed, with means 0 and 1. We can then use the (small sample) t 

statistic, described in the previous chapter, to test H0 that 0 and 1 are zero or not. The 

values of the t-test statistics (55.34 and –4.92) are given under t-ratio and the probability 

of erroneously rejecting H0 is given under p-value (0.000). 

 

The importance of testing H0 that the regression coefficient 1 is zero lies in the fact that, 

if it is zero, there is no slope. Hence, there is no regression and variable Y is independent 

of X. In our case, the t-test statistic for testing that 1 is zero is –4.92 and very highly 

significant. In addition, the regression index of fit or coefficient of multiple determination 

R
2
 = 0.455 (denoted above as R-sq= 45.5%=100xR

2
), indicates that this regression model 

“explains” 45.5% of the problem variation (the remaining 55% is “unexplained” by the 

model and hence explained by the remaining random variation in the problem).  

 

Therefore, we reject H0 and our probability of error is practically zero. We then derive a 

c.i. for the true (unknown) value of the slope, using the regression slope b1 = -7.67 point 



estimator and a function (denoted S(b1)) of the regression model standard deviation s. We 

then follow the small sample c.i. procedure for (b1 - t S(b1) , b1 + t S(b1)),  where t 

(/2 , n-2) = t (0.025, 31-2) = 2.045 and S(b1)=1.56 from the regression table above. 

 

None of these statistical results, however, hold unless the regression model hypotheses of 

Normality, independence and equal variance of the residuals also holds. Therefore, no 

regression work is entirely complete unless a thorough analysis of residuals is also 

performed. In our case, the residuals (obtained by subtracting each of the regression 

model estimations from their corresponding original values) are the following (RESI1): 
 

   0.6539    7.3039   20.3198   18.8026   11.2679  -25.7534  -29.3326  

 -14.7502    3.6943   -4.6624  -13.7433   18.9724   -0.3887    3.3086  

  -0.8554  -26.2325  -15.7548   13.9482   -9.5862   -0.3507    9.8278  

   4.1967   15.7415   25.8188    6.1682   13.9417  -12.9847    5.6790  

   0.7437  -16.0878   -9.9067  

 

                N     MEAN   MEDIAN   STDEV  MIN    MAX     Q1      Q3 

RESI1          31    -0.00     0.74   14.52 -29.33  25.82  12.98  11.27 

 

Notice how the mean is zero but the standard deviation is 14.52. For convenience, we 

standardize them (i.e. divide by the standard deviation) and they become Normal (0,1): 
 

SRES1    

  0.04665   0.52104   1.44955   1.34132   0.80382  -1.79432  -2.04370  

 -1.02769   0.25740  -0.32484  -0.95755   1.30726  -0.02678   0.22798  

 -0.05894  -1.80751  -1.08617   0.96161  -0.66089  -0.02418   0.67754  

  0.29290   1.09865   1.80198   0.43049   0.97304  -0.92907   0.40634  

  0.05322  -1.15110  -0.70884  

 

                N     MEAN   MEDIAN   STDEV   MIN    MAX    Q1     Q3    

SRES1          31    0.002    0.053   1.015 -2.044 1.802 -0.929  0.804 

 

Now the residuals have mean zero and variance unit. We will use them to assess the three 

statistical assumptions of Normality, independence and equality of variance of regression. 

We first obtain the boxplot, stem-and-leaf and Anderson Darling statistic for them: 
 

                            ------------------------ 

           -----------------I            +         I---------------  

                            ------------------------ 

          +---------+---------+---------+---------+---------+-----SRES1    

      -2.10     -1.40     -0.70      0.00      0.70      1.40 
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Both the boxplot and stem-and-leaf suggest that residuals are unimodal and symmetric 

about zero, as expected from a Normal Standard distribution. In addition, the Anderson 

Darling test for Normality yields a statistic AD = 0.313, with p-value=0.53. Hence, 

residuals can be assumed Normal Standard. Regarding the independence of the residuals, 

we plot each residual with respect to its predecessor, below, to assess this assumption.  
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The resulting random pattern is characteristic of an independent sample (the pattern of a 

serially correlated sample would instead appear as a defined form, e.g. linear, sinusoidal, 

etc. according to the existing correlation). We can also obtain their serial correlation (Xi , 

Xi+1 ) =0.335 and time series plot. All these procedures help assess residual randomness 

(or lack thereof) which are related to their independence. Since in our example there is 

small evidence against it, we are willing to assume the independence of the residuals. The 

last assumption to assess is that of equality of variance. Some residual plots may aid in 

assessing this assumption. One is the plot of residuals versus the estimations:  
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           --+---------+---------+---------+---------+---------+---FITS    

         287.0     294.0     301.0     308.0     315.0     322.0 



 

The pattern to observe is one of randomness of the residuals about mean zero. The pattern 

above is, for the purposes of this example, reasonable enough to support the equality of 

variance assumption. If the pattern were funnel-like (i.e. the range of residual values 

increases as the values of the Fits increase) then the residual variance probably depends 

on the mean. When this occurs, the assumption of equal variance no longer holds, in 

which case a variance stabilizing data transformation is one problem solving possibility.  

 

Several analytical procedures exist that also assess the equality of variance assumption. 

There are formal tests such as the one proposed by Lehman, described in Section 8.6.3.2 

of the old (Version 1D) of [7] and by Bartlett (in [9]). The equality of variance test 

proposed by Levine is described in Section 8.3.5.2 (Version 1E of [7]). It is a non-

parametric test that transforms the original observations Xij (in this case the model 

residuals) into: 

 

Wij =   Xij  - i    ;   where   i is the median of the ith group 

 

Then an (ANOVA) F-test is performed for the transformed data. If the F statistic is larger 

than the tabulated F for the corresponding ANOVA test, equality of variance is rejected. 

 

In our tensile strength example, the medians for the six standardized residual groups are 

0.804, -0.993, -0.027, -0.024, 0.973 and -0.709. The transformed variable W is: 
 

  0.75735   0.28296   0.64555   0.53732   0.00018   0.80132   1.05070  

  0.03469   1.25040   0.66816   0.03545   1.33426   0.00022   0.25498  

  0.03194   1.78051   1.06217   0.98561   0.63689   0.00018   0.70154  

  0.68010   0.12565   0.82898   0.54251   0.00004   0.22007   1.11534  

  0.76222   0.44210   0.00016  

 

The F-test (analysis of variance) for the above data set yields the result: 
 

ANALYSIS OF VARIANCE ON levine2  

SOURCE     DF        SS        MS        F        p 

damage      5     0.336     0.067     0.26    0.929 

ERROR      25     6.367     0.255 

TOTAL      30     6.702 

                                   INDIVIDUAL 95% CI'S FOR MEAN 

                                   BASED ON POOLED STDEV 

 LEVEL      N      MEAN     STDEV  -+---------+---------+---------+----

- 

     1      5    0.4447    0.3043  (-------------*------------)  

     2      6    0.6401    0.5099         (-----------*-----------)  

     3      5    0.6804    0.8219         (------------*-------------)  

     4      5    0.6773    0.4195         (------------*-------------)  

     5      5    0.4355    0.3577  (------------*-------------)  

     6      5    0.5080    0.4412    (-------------*------------)  

                                   -+---------+---------+---------+----

- 

POOLED STDEV =   0.5046           0.00      0.35      0.70      1.05 

 



The F-test statistic is F=0.29, lower than the table value and with a p-value of 0.91. The 

individual 95% c.i. for the (transformed) means overlap each other, indicating that they 

do not differ. All of which indicates that the assumption of equal variance is reasonable. 

 

We have reviewed the three regression model assumptions and they are not strongly 

disproved by the data (in real life where perfect models are rarely found such is the case). 

Therefore we will assume they are valid and proceed to use the model statistical results.  

 

However, since the explanation provided by the linear regression  (100R
2
 = 45.5%) is not 

very high, we will also try a quadratic regression, to see whether we can improve in the 

model fit (or explanation). Such is the scheme for multiple linear regression which is an 

extension of the simple one when there are two or more “predictor” variables, X1, X2, etc. 

 

Yi  0  1 Xi1  2 Xi2  ... k Xik   i   ;   1  i  n 

 

As before, i is the error term, distributed Normally with mean 0 and variance 
2
. The j ; 

0  j  k, are again regression coefficients. In general, regression requires three or more 

levels of measurements for the predictor variable X. Hence, if there are less than three 

levels of X, then we cannot proceed, until more data (levels) are gathered. If there are 

enough levels, then we can fit a multiple regression model. The dependent or response 

variable Y is now a function of k predictor independent variables X1, ... , Xk.  

 

Such regression models are adequate if they are statistically significant. This occurs when 

the null hypothesis H0:12...k is rejected (i.e. one of the regression coefficients is 

not zero). Not all independent variables, however, need to be statistically significant (e.g. 

it is enough that j for some j). Some predictor variables (Xj) may be highly significant 

(i.e. have a coefficient j ) while others may be redundant (i.e. not significant or j). 

The multiple regression model as a whole has to remain statistically significant. To 

choose the adequate subset of regressors X, we use variable selection methods. They 

weed out redundant variables and the resulting regression model improves its efficienty. 

 

If there exist four or more levels of measurements for the independent variable (X) then it 

is possible to fit a quadratic regression model to the data. Its equation is: 

 

Yi  0  1 Xi  2 Xi
2
  i   ;   1  i  n 

 

We now develop this (multiple regression) model, with the tensile strength example. 

Here, independent variable X2 corresponds to the square of the first independent variable, 

i.e. Xi
2
. The regression results obtained are: 

 
matstr = 338.03 - 12.1 damage + 0.63 dam-2 

 

Predictor       Coef       Stdev    t-ratio        p 

Constant      338.03       11.92      28.35    0.000 

damage       -12.070       7.821      -1.54    0.134 

dam-2          0.627       1.093       0.57    0.570 

 



This second (quadratic) model does not significantly improve on the first one (linear 

regression). The model fit (100R
2
 = 46.1%) is barely larger than the previous fit (45.5%) 

and the regression coefficient t-tests (tb1=-1.54 and tb2=0.57) are now no longer 

statistically significant (0.13 and 0.57) but the whole quadratic regression remains 

significant. This indicates that it includes redundant variables. This modeling attempt has 

not been productive and could have been identified from the residual analysis. Had the 

residual plot been concave (up or down) a quadratic regression would have been justified. 

In the present case, the residual plot pattern did not encourage trying a quadratic model. 

 

However, when both, linear and quadratic regression models are statistically significant, 

we want to compare them to select the best of the two. This is accomplished by 

comparing the sums of squares of the residuals of both models, divided by their 

respective degrees of freedom. We recall that the residuals are the distances from the 

actual data points to the regression function estimates. The sum of their squares provides 

a good regression performance measure, since it measures the overall distance from the 

cloud of data to the postulated regression model. 

 

We therefore compare the residual sum of squares obtained from the linear regression 

(SSRL) of the above example (6326.7) with that of the quadratic (SSRQ) regression 

(6253.1). They have  DFL=29 and DFQ=28 degrees of freedom. Their difference (divided 

by the reduction in d.f. and standardized by dividing by SSRQ / DFQ) provides a measure 

of how much explanation is gained by moving from one model to the other. In our case: 

 

              (SSRL – SSRQ)/(DFL-DFQ)       (6326.7-6253.1)/(29-28) 

     F = ----------------------------------- = --------------------------------  =  0.33 

                    (SSRQ / DFQ)                                  6253.1/28 

 

Comparing 0.33 with the F-Table (critical) value F(=0.05, dfnum=1, dfden=28) = 4.20 

we see that the test result is not statistically significant. Therefore, the quadratic equation 

does not improve significantly our regression and is not selected as the best. 

 

If selected, all regression assumptions (Normality, independence and equality of variance 

of the residuals) would have to be checked before using the quadratic regression results. 

If any of these procedures indicate that any model assumption has been violated (e.g. 

variances are not equal) the data should be transformed and the regression model should 

be recalculated. This procedure however, is beyond the scope of this SOAR. 

 

Finally, and for comparison, let’s assume that we are unaware of the relation between 

surface damage and tensile strength. Then, the best estimate of the mean tensile strength 

value for a ceramic material with surface damage value of two is still the  tensile strength 

mean of 305.66, as indicated in the descriptive statistics above. 

 

However, if the linear regression is obtained, this specific mean strength can be greatly 

improved by using the regression estimator instead, where: 

 

Strength = 332 – 7.67 x damage =  332 – 7.67 x 2 = 332 – 15.34  = 316.66 
 



Summarizing, regression models are based on two procedures. First, an optimization 

process selects a function such that the sums of the squares of the distances to each data 

point (
2

i) is minimum.  Then, a statistical model (i.e. distributional assumptions) is 

imposed on such distances (i). If an invalid regression model is used (one where the 

assumption of independence, normality and equality of variance of the i is not met) then 

the tests, the significance levels and confidence intervals derived (which are the statistical 

contributions provided by the regression model) are no longer valid or exact. 

 

Restating, the regression point estimator for Yi (given Xi) always applies (for it only 

depends on  the optimization part of the regression procedure). However, if there are 

violations of the distributional assumptions of the residuals, the confidence (interval) 

estimation for Yi and the probabilistic statements (e.g. tests of significance for the 

regression coefficients) are no longer exact nor valid. For these statistical results depend 

on the (now invalid) statistical assumptions of the regression model. 

 

ANOVA (one way analysis of variance) 

 

In materials data analysis we can work with a single or with several samples (batches). If 

we work with several samples, we want to pool them together, if possible. We can pool 

the samples and work with the combined data set as if it were one, if all the data come 

from the same population. We use the multiple sample A-D GoF test to assess the null  

hypothesis H0, that the data (i.e. all samples) come from the same population. However, 

if A-D rejects H0  then the observations become bivariate data. For, now each data point 

Pi,j implicitly provides two pieces of information (i, Yi): its batch or sample number and 

its materials property measurement (e.g. tensile strength). 

 

ANOVA is the procedure used to assess whether, say, k independent batches of n 

elements each have the same mean, or whether the group means differ. The assessment is 

made via comparing two estimates of the variance. One estimate is obtained using the 

within groups variance estimator. The other one is obtained using the between groups 

estimator. If all k group means are equal, then these two variance estimators are close (for 

both estimate the same variance parameter) and their ratio is unit. If group means differ, 

the ratio of these two variance estimators (between and within groups) will be greater 

than unit. The one-way ANOVA or Analysis of Variance model is: 

 

yij =     j    ij  ;    i  n  ;  1  j  k 

 

where j  is the contribution of the jth sample (group) to the general mean , and ij is the 

error term, a R.V. distributed Normally, with mean 0 and variance 
2
. Under H0, all 

group means (i.e. j =   j ) are equal, hence all j = 0; 1  j  k. If the null hypothesis 

H0  is rejected, then at least one group effect (j ) differs from zero. 

 

As with regression, there are three key model assumptions: that errors are independent, 

Normal and with the same variance 
2
. A crucial ANOVA assumption is that all group 

variances are equal. This assumption must be carefully assessed before accepting the 



ANOVA results. If this test fails (i.e. there is reason to believe that not all groups have 

the same variance 
2
) then data transformation or other procedures must be used. 

 

Another important ANOVA model consideration is the number of data points (nj ; 1  j  

k) in each group or batch. ANOVA works better under “balanced” designs (i.e. nj  n). 

This means that all (k) groups have equal size n. One way to visualize why this is so, is to 

think of the sample size n as the amount of information, of the k groups as informants and 

of the statistical test as an assessment procedure based on the information provided by k 

different informants. Optimally, we would like to give equal weight to all informants’ 

contribution. Therefore, it is better not to rely on more information from some (possibly 

biased) informants, over the others. This forces all batches to be of the same size. 

 

To illustrate the implementation of one-way ANOVA models we will use a real data set 

taken from Example #2 of RECIPE. This is the NIST regression program developed for 

obtaining allowables for materials data, which is available free from the NIST Web Site 

(http://www.itl.nist.gov./div898/software/recipe/ex2.dat/). The data consists of 31 tensile strength 

observations from 6 independent batches. It is given below: 
 

  328.117   334.767   347.783   346.266   338.731   297.039   293.460  

  308.042   326.486   318.130   309.049   337.093   317.732   321.429  

  317.265   291.888   297.694   327.397   303.863   313.098   323.277  

  312.974   324.519   334.596   314.946   322.719   291.121   309.785  

  304.850   288.018   294.199  

 

The descriptive statistic and boxplot for the tensile strength data values are: 
 

                N     MEAN   MEDIAN  STDEV  MIN    MAX     Q1     Q3 

strength       31   316.01   317.27  16.62 288.02 347.78 303.86 327.40 

            

                            ------------------- 

              --------------I         +       I------------------  

                            ------------------- 

          ----+---------+---------+---------+---------+-------strength 

            288       300       312       324       336       348 

 

Notice how both mean and median are close and tails are similar, suggesting a possible 

symmetric, unimodal parent distribution, close to the Normal. The one way ANOVA 

model was implemented for factor “batches” with six levels (batches 1 through 6): 
 

 

ANALYSIS OF VARIANCE ON strength 

SOURCE     DF        SS        MS        F        p 

batches     5      4915       983     7.30    0.000 

ERROR      25      3369       135 

TOTAL      30      8284 

 

The above ANOVA table displays an F-test result of 7.3. The F-test is the ratio of the 

bewteen (batches MS=983) to the within (error MS=135) means variance estimators and 

is highly significant (i.e. p-value is practically zero). This result indicates that batch 

means are different and batches cannot be pooled together. Below, we present graphical 

95% confidence intervals for the six batch means: 

http://www.itl.nist.gov./div898/software/recipe/ex2.dat/)


 

                                   INDIVIDUAL 95% CI'S FOR MEAN 

                                   BASED ON POOLED STDEV 

 LEVEL      N      MEAN     STDEV  -------+---------+---------+-------- 

     1      5    339.13      8.16                       (-----*----)  

     2      6    308.70     12.44        (----*----)  

     3      5    317.08     16.24            (-----*----)  

     4      5    313.07     12.56          (-----*----)  

     5      5    321.95      8.61               (----*----)  

     6      5    297.59      9.31  (-----*----)  

                                   -------+---------+---------+-------- 

POOLED STDEV =    11.61                 300       320       340 

 

Notice how batches 2 through 5 are close but batches 1 and 6 are not. Standard deviations 

are also close. However, before accepting any of these ANOVA results, we first need to 

check the model assumptions. To do so we plot the standardized residuals vs. the fits: 
 

 -1.03922  -0.41186   0.81605   0.67292  -0.03790  -1.10020  -1.43786  

 -0.06216   1.67789   0.88952   0.03282   1.88788   0.06136   0.41016  

  0.01733  -2.37673  -1.45015   1.35202  -0.86821   0.00306   0.96330  

 -0.84686   0.24228   1.19297  -0.66087   0.07248  -0.61070   1.15003  

  0.68443  -0.90344  -0.32032  

 

 

                N     MEAN   MEDIAN  STDEV   MIN    MAX     Q1     Q3 

Sres3          31    0.000    0.017  1.000 -2.377  1.888  -0.847 0.816  

 

 

         - 

         -                 x         x 

      1.5+                      x 

         -   x                             x 

 Sres3   -                 x    x                                x 

         -   x                                                   x 

         -                           x     x 

      0.0+                 2    x    2     x                     x 

         -   x                                                   x 

         -   x                             x 

         -   x                  x          x                     x 

         -                 x 

     -1.5+                 x    x 

         - 

         - 

         -                           x 

         - 

           +---------+---------+---------+---------+---------+---FITS3    

       296.0     304.0     312.0     320.0     328.0     336.0 

 

The above residual plot shows a stable (parallel) pattern within 2 standard deviations of 

the mean (zero) as expected from the Normal Standard residuals. In addition, the AD 

GoF Normality test statistic was 0.183, with a p-value of 0.9. Therefore, we will assume 

the Normality of residuals, as required by the model. 
 

Had there been problems with the residuals (e.g. the above pattern was not stable) one 

can also plot the residuals versus the factors (e.g. batch) to assess potential problems: 



 
 

         - 

         -               x         x 

      1.5+                                   x 

         -                                             x         x 

 Sres3   -     x         x                   x 

         -     x                                                 x 

         -                         x                   x 

      0.0+     x         2         2         x         x 

         -     x                                                 x 

         -                                             x         x 

         -     x                             x         x         x 

         -               x 

     -1.5+               x                   x 

         - 

         - 

         -                         x 

         - 

           ----+---------+---------+---------+---------+---------batch   

             1.0       2.0       3.0       4.0       5.0       6.0 

 

 

 

In practice, groups (batches) are often (as in the above example) of different sizes. To 

correct for this problem we can use the “effective” sample sizes (n’) obtained via the 

formula: n’ = (N-n
* 

)/(k-1) ; where n
*
 = n

2
j /N  ; N=nj and 1  j  k. When nj = n (i.e. 

all groups have the same size) then n* = n’ = n. When nj  n (group sizes differ) then n’  

n (i.e. the test procedure is less efficient, for the samples are sub optimal). In statistical 

analysis we strive to obtain the most efficient and unbiased assessment (test) from the 

data (information). Therefore, we try to obtain samples as close in size as possible. 

 

Summarizing, the one way ANOVA model is used to compare means of different groups 

(levels) for one variable or factor, as done above. One can also compare several factors at 

different levels, known as two, three, etc. way ANOVAs. It is important and useful to 

first carefully plan how the ANOVA is going to be carried out, i.e. design of (statistical) 

experiments or DoE. This exercise extracts the maximum results out of the information 

obtained and should be performed by (or with the assistance of) a professional 

statistician. If groups differ, they cannot be pooled together into a single analysis. 

Methods for c.i. estimation of the differences between group mean are available. Further 

readings on this topic are found in references [8, 9, 10] of the appendix. 

 

Non Parametric Alternatives to ANOVA 

 

As seen above, ANOVA requires that the data (or the residuals) are independent and  

Normally distributed, with the same variance, among other assumptions. When the 

Normality assumption is not appropriate, one alternative is to implement a K-sample 

Anderson Darling (AD) test. This distribution free procedure assesses whether k different 

samples (batches) come from the same distribution or not, without assuming that the 

parent distribution is Normal (nor any other specific distribution). 



 

The K-sample AD non parametric procedure, described in Section 8.3.2.2 of [7], tests the 

hypothesis H0 that the populations from which the samples come from are identical. It 

only assumes the independence of the samples and (optimally) that the measurements are 

continuous (though this is not necessary) so there are no ties among their values  

 

This freedom allows its application as a screening test (following handbooks [6 and 7]) 

for possibly pooling the batches. When the K-sample AD test rejects hypothesis H0 then 

the different batches cannot be pooled together. The ANOVA procedure above developed 

is then applied to aid in obtaining the desired allowables. 

 

To illustrate the use of the K-sample AD test, we use a subset of the same data set above, 

composed of the last three tensile strength batches. First, lets combine and sort these three 

tensile strength samples (batches) resulting in a single and sorted sample of N=31 data 

points. In the combined sample, N will be the total number of data points and L will be 

the total number of distinct or different data points. Only if there are no ties (as now 

occurs) is L=N. Denote by Zi (for  i L) the L rearranged (sorted) distinct values in the 

combined sample. Notice the Zi are all different and increasing. 

 

Denote by hj the number of data points in the combined, sorted sample that are equal to 

the value Zj (if there are no ties, hj is unit). Denote by Hj the number of values, in the 

combined sample, that are strictly less than Zj (including ties in those smaller values) plus 

one half of the number of values that are equal to Zj (i.e. tied with this value). Let Fij 

denote the number of values, in the ith sample, that are strictly less than Zj (including 

ties) plus one half of the number of values in the ith sample equal to Zj (i.e. tied with it). 

 

The K-Sample Anderson Darling statistic is defined: 

 

                     N – 1              1           (NFij - ni Hj )
2
 

ADK =      -----------   i --- j hj  ---------------------------------  

                    N
2
(k-1)            ni          Hj (N-Hj)-Nhj /4 

 

Where the i index runs from 1 to k and k is the number of groups or batches, where the j 

index runs from 1 to L, and where, as before, L is the number of distinct values of Zj.  

 

Under the null hypothesis H0 (of no difference between the population distributions) the 

ADK statistic has a known mean and variance. Then, its distribution can be approximated 

by a well known one and percentiles or critical values for the test, can be obtained. 

 

To illustrate its implementation, we will start the calculations for the last three batches of 

the RECIPE Example #2 above. Calculations are very tedious without a computer 

program, even for very small values. The three last batches have five observations each. 

They also have (see ANOVA) obviously different means and thus differ significantly. 

 



The data in question (ksamp) from the last three batches of the ANOVA example, their 

sequence (N) and batch group (gord) numbers and their corresponding reordering after 

sorting in ascending order (ordsamp  and newgord) are given below: 

 

   N  gord   ksamp  ordsamp  newgord 

 

   1       4   297.694   288.018        6 

   2       4   327.397   291.121        6 

   3       4   303.863   294.199        6 

   4       4   313.098   297.694        4 

   5       4   323.277   303.863        4 

   6       5   312.974   304.850        6 

   7       5   324.519   309.785        6 

   8       5   334.596   312.974        5 

   9       5   314.946   313.098        4 

  10       5   322.719   314.946        5 

  11       6   291.121   322.719        5 

  12       6   309.785   323.277        4 

  13       6   304.850   324.519        5 

  14       6   288.018   327.397        4 

  15       6   294.199   334.596        5 

 

For this example, N=L=15 (for there are no ties); k=3 (there are three groups or batches); 

ni = n = 5 (all batches have the same number of observations) and hj=1 (there are no ties). 

In addition, Hj will always be the number of values that are strictly less than Zj  plus 0.5 

(since hj=1 and we add one half of unit) and Fij is the number of values in the ith sample 

that are strictly less than Zj plus one half of unit, by the same reason as before. Hence: 

 

                     15 – 1              1            (15Fij – 5 Hj )
2
 

ADK =      -----------   i  --- j 1  ---------------------------------  

                    15
2
(3-1)            5          Hj (15-Hj)-15/4 

 

Once the above equation is set up, an iterative computer program will provide the results 

for the ADK statistic. Program SBMP17, a computer code for calculating Statistically 

Based Material Properties for MIL HDBK 17 that includes the AD statistic, is available 

from NIST (through their above mentioned Web Page). 

 

If all batches have the same size then we compare the statistic ADK with the critical 

values in Table 8.5.6 of [7]. If the ADK statistic is smaller than the table value, then we 

reject hypothesis H0 at significance level =0.05, and conclude that the batches were 

drawn from different populations. If batch sizes differ, then we calculate the variance for 

statistic ADK, as well as the critical value to test it, both from the formulas in section 

8.3.2.2 of [7]. Then, we compare the ADK statistic with this critical value (instead of 

with the Table 8.5.6 value) in the same way as explained above. 

 

 



Summary. 

 

In this chapter we have discussed some fundamental problems related to multivariate data 

analysis and multivariate statistics. When data consist of observations yielding more than 

one measurement (or pieces of information) they are called multivariate data. Their data 

analysis is more complex but also more informative than the univariate, especially if 

there are associations among the different variables that integrate the multivariate 

information vector. For, some of these variables may be easier, faster or cheaper to 

measure than the others. In such cases, we take advantage of the existing relationships to 

measure some variables and use these results to estimate the measurements for the others. 

 

If the multivariate observations are qualitative then we implement categorical data 

analysis methods such as contingency tables, to assess possible associations. If data are 

quantitative, we can implement methods that quantify this associations, such as 

correlations and regressions. Finally, if data are both qualitative and quantitative we can 

implement other methods such as ANOVAs (analysis of variance). But, whichever the 

case we are dealing with (and whichever method we implement) it is extremely important 

to always assess whether the model assumptions have been met, before we are able to use 

any of the model derived statistical results. 

 


